首页 > 实用文 > 教学设计

方程教学设计

时间:2024-10-11 15:51:16
方程教学设计

方程教学设计

作为一名老师,通常需要准备好一份教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。怎样写教学设计才更能起到其作用呢?以下是小编帮大家整理的方程教学设计 ,仅供参考,大家一起来看看吧。

方程教学设计 1

教学目标

掌握b2—4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2—4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2—4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用。

通过复习用配方法解一元二次方程的b2—4ac>0、b2—4ac=0、b2—4ac<0各一题,分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目。

重难点关键

1。重点:b2—4ac>0 一元二次方程有两个不相等的实根;b2—4ac=0 一元二次方程有两个相等的实数;b2—4ac<0 一元二次方程没有实根。

2。难点与关键

从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2—4ac的情况与根的情况的关系。

教具、学具准备

小黑板

教学过程

一、复习引入

(学生活动)用公式法解下列方程。

(1)2x2—3x=0 (2)3x2—2 x+1=0 (3)4x2+x+1=0

老师点评,(三位同学到黑板上作)老师只要点评(1)b2—4ac=9>0,有两个不相等的实根;(2)b2—4ac=12—12=0,有两个相等的实根;(3)b2—4ac=│—4×4×1│=<0,方程没有实根。

二、探索新知

方程b2—4ac的值b2—4ac的符号x1、x2的关系

(填相等、不等或不存在)

2x2—3x=0

3x2—2 x+1=0

4x2+x+1=0

请观察上表,结合b2—4ac的符号,归纳出一元二次方程的根的情况。证明你的猜想。

从前面的具体问题,我们已经知道b2—4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:

求根公式:x= ,当b2—4ac>0时,根据平方根的意义, 等于一个具体数,所以一元一次方程的x1= ≠x1= ,即有两个不相等的实根。当b2—4ac=0时,根据平方根的意义 =0,所以x1=x2= ,即有两个相等的实根;当b2—4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解。

因此,(结论)(1)当b2—4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1= ,x2= 。

(2)当b—4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2= 。

(3)当b2—4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根。

例1。不解方程,判定方程根的情况

(1)16x2+8x=—3 (2)9x2+6x+1=0

(3)2x2—9x+8=0 (4)x2—7x—18=0

分析:不解方程,判定根的情况,只需用b2—4ac的值大于0、小于0、等于0的情况进行分析即可。

解:(1)化为16x2+8x+3=0

这里a=16,b=8,c=3,b2—4ac=64—4×16×3=—128<0

所以,方程没有实数根。

三、巩固练习

不解方程判定下列方程根的情况:

(1)x2+10x+26=0 (2)x2—x— =0 (3)3x2+6x—5=0 (4)4x2—x+ =0

(5)x2— x— =0 (6)4x2—6x=0 (7)x(2x—4)=5—8x

四、应用拓展

例2。若关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示)。

分析:要求ax+3>0的解集,就是求ax>—3的解集,那么就转化为要判定a的值是正、负或0。因为一元二次方程(a—2)x2—2ax+a+1=0没有实数根,即(—2a)2—4(a—2)(a+1)<0就可求出a的取值范围。

解:∵关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数根。

∴(—2a)2—4(a—2)(a+1)=4a2—4a2+4a+8<0

a

∵ax+3>0即ax&

gt;—3

∴x

∴所求不等式的解集为x

五、归纳小结

本节课应掌握:

b2—4ac>0 一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2—4ac=0 一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2—4ac<0 一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用。

六、布置作业

1。教材P46 复习巩固6 综合运用9 拓广探索1、2。

2。选用课时作业设计。

第7课时作业设计

一、选择题

1。以下是方程3x2—2x=—1的解的情况,其中正确的有( )。

A。∵b2—4ac=—8,∴方程有解

B。∵b2—4ac=—8,∴方程无解

C。∵b2—4ac=8,∴方程有解

D。∵b2—4ac=8,∴方程无解

2。一元二次方程x2—ax+1=0的两实数根相等,则a的值为( )。

A。a=0 B。a=2或a=—2

C。a=2 D。a=2或a=0

3。已知k≠1,一元二次方程(k—1)x2+kx+1=0有根,则k的取值范围是( )。

A。k≠2 B。k>2 C。k<2且k≠1 D。k为一切实数

二、填空题

1。已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________。

2。不解方程,判定2x2—3=4x的根的情况是______(填"二个不等实根"或"二个相等实根或没有实根")。

3。已知b≠0,不解方程,试判定关于x的一元二次方程x2—(2a+b)x+(a+ab—2b2)=0的根的情况是________。

三、综合提高题

1。不解 ……此处隐藏19412个字……母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?

(2)字母和数字之间的乘号省略后,谁写在前面?

a2表示什么?2a表示什么?

师强调:a表示两个a相乘,读作a的平方。

口答结果:3的平方5的平方6的平方

省略数字和字母之间的乘号后,数字一定要写在字母的前面。

4、练习:省略乘号写出下面各式。

x×xm×m0.1×0.1a×63×nχ×8a×c

教学例3(2):

学生自学并完成相关练习。两生板演。师强调书写格式。

三、巩固练习:

1、完成做一做1、2题。

要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。

2、练习十:第1-3题先独立解答后,再集体评议。

方程教学设计 14

目标预设:

1.使学生初步理解方程的意义,知道方程的解、解方程的意义和验算的方法,能正确解方程。

2.培养学生的分析比较能力和再创造意识。

3.培养学生认真审题,自觉检验的良好学习习惯。

过程预设:

一、情境创设

六一儿童节快到了,文峰大世界推出学生用品大展销,这里是选取其中的几件。

商品上标价分别为(字母表示的为商品价格不知道的):

上衣 65元 巧克力 y元

钢笔 40元 皮鞋 60元

书 x元 文具盒 20元

如果拿100块钱去买商品,用钱的结果会有哪几种不同的情况?

(三种情况,大于、小于、等于)

如果请你自己购物的话,你准备选择什么

把你的购买情况与用钱结果用式子表示出来。纯茨隳苄炊嗌伲?BR>选取生列出的算式: 65+40=100 65+x<100 y+60 x+y等等

二、观察讨论:把上面的式子分类,你认为可以怎么分?

1.小组讨论,介绍如何分。

2.教师指出:像这些用等号连起来的算式我们都叫它等式。而含有未知数的等式叫方程。师板书。

3.今天我们就来研究方程。(板书课题)

4.提问:这里哪些算式是方程?根据学生的回答师用集合圈圈出方程。

知道了什么是方程,你能写出一些方程来吗?试试看,在随练本上写出一个方程。

5.汇报:说说你写的方程是怎样的?

提问:如65+x是方程吗?为什么?

由此看出:具备方程的两个条件是什么?

师:65+x=100、65+58=123都是等式,一个是方程,一个不是方程,方程和等式之间有什么关系?

可以用一句话或者图来表示吗?

三、方程史话

说起方程,老师这儿还有一个故事呢:我们都知道《九章算术》是我国著名的《算经十书》之一,是十部算经中最重要的一部。《九章算术》共收有246个数学问题,绝大多数内容是与当时的社会生活密切相关的。其中方程术是《九章算术》最高的数学成就,是它在世界上最早提出了方程的概念,并系统地总结了方程的解法,比我们现在所熟知的希腊丢番图方程要早三百多年。

《九章算术》反映出我国古代数学在秦汉时期就已经取得在全世界领先发展的地位,作为一部世界科学名著,它在隋唐时期就已传入朝鲜、日本。现在,它已被译成日、俄、德、法等多种文字在世界上广泛流传。

听了这段话,你有什么感想?

四、解方程

1.师:大家知道这些方程中的未知数的值是多少吗?你是怎么知道的?

生练习求未知数,指名板演。(两题)

师讲解:这是我们学过的求未知数x,当x=?时这个方程两边才相等,所以我们把x=?就叫做是这个方程的解。提问:另一道方程的解是多少?

刚才我们求这个方程的解的过程就是解方程。因此,我们在解方程时写个“解”字。师补充写解。

其实我们以前求未知数x的过程,实际上就是在解方程。

2.选出方程的解,并画上横线。

X+8=30 (x=38 x=22)

X=5是方程( )的解。15x=3 6x=30

12-x=8 (x=4 x=20)

提问:你是怎样找出方程的解的?

3.检验

师:我们在解方程的时候,也可以用这种代进去的方法算一算,如果它的等式结果和右边相等,说明是正确的,这种就是方程的检验方法。

请大家把书翻到80页,看一下方程的检验过程。

需要注意的是检验的格式,自己任意挑选一题进行检验。

五、巩固练习

做个游戏,好吗?

1.分组出五题判断题,写出式子,可以是方程,也可以不是方程的,考考其他组,看看哪个组编的题最好。

2.求出最好这组中的两道方程中的解,并检验。

方程教学设计 15

教学内容:书本74页例2

教学目标:分析稍复杂的两步计算的应用题的数量关系,寻找等量关系式。

教学重难点:找等量关系式列方程。

教学过程:

一、忆旧引新

说说下面各题的等量关系:

如:①、红花是黄花的3倍

②、红花比黄花的3倍多2朵。(等)

二、兴趣谈话引入新例(74页例2),后出示情景图。

1、让生说说从图中知道了哪些信息?要解决什么问题?

2、让生根据信息和问题列出题中的等量关系式,列出方程并解方程。

板书:黑色皮的块数×2-4=白色皮的块数

解:设共有x 块黑色皮。

2x -4=20

2x=20+4

2x =24

x=24÷2

x =12

答:-----------------。

3、引导生用不同方法列方程。

4、小结:列方程解决问题的主要步骤:①弄清题意,设未知量为x 。②分析题意,找等量关系。③根据等量关系列出方程。④解方程。⑤检验。

三、巩固拓展:

1、1.根据方程列出等量关系式。

粮店运来72吨大米,比运来的面粉的3倍多12吨。运来面粉多少吨? 根据( ),列方程:3x +12=72

根据( ),列方程:72-3x =12

2.先说说下列各题的数量关系,再列方程解决问题。

花布每米35元,比黄布的3倍少12元。黄布每米多少元?(提示取值)

四、作业:书本第75~76页第5、6、9题。

教学反思:

本节课是用方程解稍复杂的应用题,是在学生已有知识经验的基础上进行学习的,都是抓住解题关键,即先找出题里的等量关系,再根据等量关系列出方程并解答,再而检验。学生知道了用方程解答应用题的步骤。只是部分学生未会找题里等量关系,所以仍需多练。

《方程教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式